no evidence of *dl*-epiyohimbane; the remaining chromatographic fractions amounted to 67 mg. of non-crystalline, tarry residues.

Anal. Caled. for $C_{19}H_{24}N_2;$ C, 81.38; H, 8.63. Found: C, 81.71; H, 8.35.

dl-Yohimbane Hydrochloride.—A 0.07-g. portion of the dichlorophosphate salt of $\Delta^{3(4)}$ -dehydroyohimbane was dissolved in 30 ml. of ethanol and hydrogenated at room temperature and pressure, using 0.010 g. of platinum oxide. There was a rapid uptake of hydrogen which slowed down considerably after the first 0.5 hr.; the hydrogen absorbed corresponded to 1 mole. The catalyst was filtered off, and the ethanol was recrystallized from ethanol. The final product melted 276-277°.

Anal. Caled. for C₁₉H₂₅ClN₂: C, 72.01; H, 7.95. Found: C, 71.52; H, 8.09.

In order to obtain the free base, a solution of 0.050 g. of dl-yohimbane hydrochloride in 2 cc. of ethanol was added to 0.015 g. of potassium hydroxide in ethanol. The whole was thoroughly shaken and allowed to stand for 15 minutes. The ethanol was then evaporated to dryness over a steambath and under a current of nitrogen. To the white residue was added 4 ml. of water, and again the mixture was thoroughly shaken for 15 minutes. The colorless, crystalline precipitate of yohimbane was then filtered off and thoroughly washed with excess water and then recrystallized from 2 cc. of ethanol.

from 2 cc. of ethanol. The dl-N-(β -3'-Indolylethyl)-*trans*-decahydroisoquinoline (IIa). A. From dl-Decahydroisoquinoline and Indolylethyl Bromide.—A mixture of 8 g. of decahydroisoquinoline^{3d} and 13 g. of β -3-indolylethyl bromide in 50 ml. of ethanol was refluxed for 1 hr. The mixture was then cooled in an ice-bath; the colorless precipitate of the salt which was then collected on the filter was first washed with ether and then recrystallized from ethanol and a little acetone. In this way there was obtained 14.0 g. (67%) of colorless hydrobromide crystals, m.p. 240–242°.

Anal. Calcd. for $C_{19}H_{27}BrN_2$: C, 62.80; H, 7.49. Found: C, 63.04; H, 7.57.

The free base was prepared by treating some of the above salt with aqueous sodium hydroxide. The colorless crystals of the free base melted at $150-151^{\circ}$, after recrystallization from ethanol.

Anal. Calcd. for C₁₉H₂₆N₂: C, 80.80; H, 9.28. Found: C, 81.34; H, 9.66.

B. By Reduction of the Lactam XIII.—To a solution of 0.2 g. of lactam XIII in 50 ml. of anhydrous tetrahydrofuran was added a suspension of 0.2 g. of lithium aluminum hydride in 50 ml. of tetrahydrofuran over a period of 3 hr. The mixture was then refluxed on a steam-bath for 15 minutes. After evaporation of most of the solvent under reduced pressure, the precipitate left was taken up in methanol and filtered. Evaporation of the filtrate over a steambath gave yellowish crystals, m.p. 277–279°. This material was taken up in aqueous sodium hydroxide and the resulting mixture thoroughly extracted with chloroform. Evaporation of the chloroform on a steam-bath and recrystalization of the residue from methanol gave 0.04 g. (21%)of colorless crystals, m.p. 151°, which was shown, by mixed melting point determination, to be identical with the base described in A above.

MADISON, WISCONSIN

[CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY AND RADIATION LABORATORY, UNIVERSITY OF CALIFORNIA]

Sites of Azaserine Inhibition During Photosynthesis by Scenedesmus¹

By S. A. Barker,² J. A. Bassham, M. Calvin and U. C. Quarck

Received May 10, 1956

L-Azaserine has been found to have a profound effect on the reservoir sizes of many of the metabolic intermediates produced during photosynthesis by *Scenedesmus*. Marked increases in levels of glutamine and the acids of the Krebs cycle were accompanied by a corresponding depletion of the amino acid reservoirs indicating that one of the major sites of azaserine action is in reactions involving transamination. In contrast, the photosynthetic carbon cycle is virtually unaffected and the rate of formation of sucrose is increased.

The success attending the use of azaserine^{3,4} as a specific inhibitor of one stage in the metabolic pathway leading to the synthesis of inosinic acid in pigeon liver prompted us to use this antibiotic in a similar attack on purine synthesis in *Scenedesmus*. However, investigation of the products resulting during photosynthesis by suspensions of these algae in the presence of azaserine showed that a more widespread interference with metabolism had occurred. The purpose of this communication is to describe the nature of these effects and to attempt to assess their importance in a general picture of the metabolic effects of azaserine.

Experimental

Experimental Procedure.—Two suspensions, each containing washed *Scenedesmus* cells (packed volume, 0.2 cc.) and KH₂PO₄ solution (0.4 cc., $3.2 \times 10^{-6} M$) in 21 cc. and one with added L-azaserine (4 mg.), were left for one hour in thin glass containers illuminated on each side by a 150 w. light (reflector flood) to achieve steady states with 4% CO₂ in air. Each suspension was then allowed to photosynthesize for five minutes with NaHC¹⁴O₈ solution (0.9 cc., 360 μ c.) and then flushed with air for 1 minute. The cells were then killed by pouring into boiling ethanol (88 cc.) and the resulting 80% ethanol extract was separated from insoluble material which was then reëxtracted with 20% ethanol (100 cc.). The total fixation of radioactivity was determined in each case by uniformly distributing and drying 50- μ l. aliquots of the 80% ethanol suspensions plus 50 μ l. of 6 N acetic acid on aluminum discs, and counting the radioactivity with a Scott large-window Geiger-Mueller tube. The radioacuvity extracted from each suspension with 80% ethanol and with 20% ethanol was determined in a similar manner. After the combined extracts of each suspension were concentrated to 3-4 cc., aliquots calculated to contain 1 × 10⁶ counts/min. each were applied to several washed Whatman No. 4 papers and separated first in phenol-water and then in butanol-propionic acid in the manner described by Wilson and Calvin.⁶ After radioautographs of the chromatograms had been made, the various components detected on the papers were counted (Table I). Since the correction for self-absorption of radiation would be the same for each compound, no correction was applied. The results of a duplicate experiment, in which 1 mg. of azaserine was used, are also presented (Table I).

Other experiments carried out in an identical manner to those described above were: (1) a repetition of the 1-mg. azaserine experiment in which an intense photospot light was substituted for one of the reflector floods for 50 minutes

⁽¹⁾ The work described in this paper was sponsored by the U. S. Atomic Energy Commission.

⁽²⁾ Rockefeller Research Fellow, 1955-1956.

⁽³⁾ S. C. Hartman, B. Levenberg and J. M. Buchanan, This JOURNAL, 77, 501 (1955).

⁽⁴⁾ B. Levenberg and J. M. Buchanan, ibid., 78, 504 (1956).

⁽⁵⁾ A. T. Wilson and M. Calvin, ibid., 77, 5948 (1955).

	TABL	E I		
TH	E EFFECT OF AZASE	RINE ON Scenedesm	us Control II	Agaserine II (1 mg)
Date	Control I	Azaserine I (4 mg.)		nzascilie II (I mg.)
Dete	ermination on alumi	num dise, counts/n	nin.	
Total fixation	$22 imes 10^{6}$	$27 imes10^{6}$	$29.2 imes10^{6}$	33×10^{6}
80% ethanol extract	45.5%	47%	47.3%	47.3%
20% ethanol extract	5.9%	7.5%	7.5%	8.5%
Determination on paper	, counts/min.: equa	al total radioactivit	y placed on each p	aper
Glutamine	332	1192	390	1312
Glutamic acid	2066	1227	2632	1139
Aspartic acid	4436	989	7020	762
Serine	1839	849	2411	990
Alanine	1166	272	2000	314
Glycine)	400	574	1045	908
Threonine $\int_{-\infty}^{-\infty} dt ea$	-100	014	1040	000
Tyrosine	261	17 1	444	295
Valine	1051	787	1468	1053
Sucrose	923×9.5^{a}	2380×9.5	937	2072
Malic acid	3922 imes 9.5	5814×9.5	2691×9.5	4263×9.5
Citric acid	466×9.5	1118×9.5	145 imes 9.5	400×9.5
α-Ketoglutaric acid	40	200	27 0	1054
Fumaric acid	269	108	381	344
Succinic acid	1117	1689	822	922
Glyceric acid	576	966	1349	845
Glycolic acid	200	3182	240	880
Lipids	1650×9.5	1259×9.5	2540×9.5	1923×9.5
Phospholipids	1229×9.5	1071×9.5	1350×9.5	853×9.5
Area X	1001×9.5	751 imes 9.5	621×9.5	538×9.5
Sugar phosphates, PGA and origin	$14,040 \times 9.5$	$16,379 \times 9.5$	$15,071 \times 9.5$	$14,424 \times 9.5$

 a The factor 9.5 was used whenever the radioactivity was counted through aluminum foil.

of the one hour steady state period (Table II) and (2) an experiment in which one suspension contained 4 mg. of azaserine and the other both azaserine (4 mg.) and glutamine (5 mg.) (Table III).

	TABLE II	
THE EFFECT OF A	zaserine and Stron Scenedesmus	NG LIGHT ON
	Control III	Azaserine III (1 mg.)
Determination of	on aluminum dise, co	unts/min.
Total fixation	20.9×10^{6}	14×10^{6}
80% ethanol extract	47.8%	57.8%
20% ethanol extract	2.5%	4.4%
Determinat	ion on paper, counts	/m in .
Glutamine	529	4964
Glutamic acid	4951	2945
Aspartic acid	9089	2262
Serine	2834	1591
Alanine	2345	951
Glycine	0.40	000
Threonine area	949	929
Sucrose	1357×9.5	1907×9.5
Malic acid	3743×9.5	6479×9.5
Citric acid	254 imes9.5	1919×9.5
α -Ketoglutaric acid	381	1851
Fumaric acid	344	540
Succinic acid	1621	3180
Glyceric acid	1553	1312
Glycolic acid	285	506
Lipids	3582×9.5	2491×9.5
Phospholipids	2259×9.5	1665×9.5
Area X	725 imes9.5	506×9.5
Sugar phosphates, PGA	1	
and origin	$11,800 \times 9.5$	9312 imes 9.5

Attempted	Reversal	OF A	ZASER	INE	INHIBITIC	N WITH
	(Gluta	MINE			
		Azas	erine (4 alone	mg.)	Azas (4 m glutami	erine g.) + ne (5 mg.)
Deter	mination on	alum	inum d	lisc,	counts/mi	n.
Total fixatio	n		33.6 >	< 10	35.	8×10^{6}
80% ethano	l extract		41.2%)	52	.9%
20% ethano	l extract		1.15°	76	2	.22%
I	Determinatio	n on p	oaper,	coun	ts/min.	
Glutamine		21	82		6572	
Glutamic ac	iđ	13	53		2704	
Aspartic aci	đ	6	66		939	
Serine		7	35		690	
Alan in e		3	93		473	
Glycine]	3783	5	03		527	
Threonine ∫	area	0	00		021	
Sucrose		14	96×96	9.5	1111	\times 9.5
Malic acid		36	97×97	9.5	4631	\times 9.5
Citric acid		5	86×9	9.5	446	$\times 9.5$
α-Ketogluta	ric acid	6	96		1052	
Fumaric aci	đ	2	42		249	
Succinic acid	1	8	70		1308	
Glycolic acid	1	34	24		3138	
Lipids		16	39×9	9.5	2192	\times 9.5
Phospholipic	ls	5	41×9	9.5	1310	\times 9.5
Area X		7	97×97	9.5	1370	$\times 9.5$
Sugar phosp	hates, PGA					
and origin		11,9	70×9	9.5	12,383	\times 9.5

TABLE III

Chromatograms from each of the above experiments were sprayed with ninhydrin to obtain a qualitative estimate of the concentrations of amino acids present. Glutamine obtained from azaserine chromatograms, as well as the glutamic acid produced from it by hydrolysis with 1 N HCl

	TAB	LEIV		
	THE EFFECT OF AZ	ASERINE ON Chlorella	t.	
	Control IV	Azaserine IV (4 mg.) — air flushed 30 sec.	Control V	Azaserine V (4 mg.) – air flushed 60 sec.
I	Determination on alun	ninum dise, counts/m	nin.	
Total fixation	$25.4 imes10^6$	30.8×10^{6}	23.4×10^{6}	34.8×10^{6}
80% ethanol extract	60.7%	66.4%	62%	62.8%
20% ethanol extract	8.3%	8.25%	10.6%	8.1%
	De termin ation on	paper, counts/min.		
Glutamine	25 0	300	6 2 3	53 0
Glutamie acid	22 0 3	22 90	2 3 7 0	2000
Aspartie acid	2541	27 00	1900	218 0
Serine	286 6	3361	3890	47 7 0
Alanine	9635	8232	10,300	9670
Glycine Threonine	8 00	9 6 0	7 80	830
Sucrose	4458×9.5	3933 imes 9.5	4350×9.5	4330 imes9.5
Malic acid	2243	2 409	198 0	197 0
Citric acid	245	2 50	20 0	22 0
Fumaric acid	571	428	38 0	300
Lipids Phospholipids	2101×9.5	1895×9.5	2800×9.5	2750×9.5
Area X	880×9.5	858 imes 9.5	630×9.5	640×9.5
Sugar phosphates, PGA and origin	11,583 $ imes$ 9.5	12,085 $ imes$ 9.5	18,690 × 9.5	$19,140 \times 9.5$

at 100° for 2 hours, were characterized by cochromatography on two-way paper chromatograms and by ionophore-sis on paper for 3 hours at 600 v. in 0.1 M propionate, ρ H 5.6. Sucrose, amino acids and carboxylic acids mentioned in Table I were likewise characterized by cochromatography on two-way paper chromatograms and most of them also by ionophoretic separations. The lipids, phospholipids and pigments were all moved at a similar distance in phenolwater but separated in butanol-propionic acid into two mobile areas designated lipid (containing some pigment), phospholipid (containing no visible pigment) and a station-ary area designated X (containing some pigment). No radioactivity could be extracted from these areas by water elution but most of the activity was extracted with a mixture of petroleum ether and ethanol. The compounds in area X ran faster than diphosphopyridine nucleotide in phenol-water but showed the same lack of mobility in butanol-propionic acid.

The triose phosphate, pentose monophosphate, glucose cyclic 1,2-phosphate, hexose monophosphate, phospho-glyceric acid and phosphoenolpyruvate were eluted from giveric acid and phosphoenolpyrivate were eluted from control and azaserine chromatograms, treated with purified "Polidase" phosphatase, and the products analyzed by paper chromatography and radioautography.⁵ The effect of azaserine (4 mg.) on *Chlorella* was also deter-mined in two experiments (Table IV) identical to that de-scribed for the *Scenedesmus* model experiment except that

in one case the time of flushing with air was 30 sec. and in the other, 60 sec.

Discussion

It is evident from Table I that with Scenedesmus the azaserine causes a build-up of the acids (e.g., citric, malic, α -ketoglutaric, succinic) of the Krebs tricarboxylic acid cycle and a decrease in radioactivity and amount (revealed by ninhydrin) of the amino acids (glutamic acid, aspartic acid) derived therefrom by amination or transamination. Alanine, serine, valine and tyrosine, which are also known to be formed by transamination of their corresponding keto-acids, were likewise depleted. Because of the low activity of glycine and threonine and the presence of other compounds in this area the effect of azaserine on these amino acids could not be assessed. Glutamine,6 which is a donor of amino-groups during transamination, increases markedly in activity and amount (approximately (6) A. Meister and S. V. Tice, J. Biol. Chem., 187, 173 (1950).

1 mg./g. of cells as estimated by ninhydrin) in the presence of azaserine. It is therefore suggested that azaserine interferes with transamination reactions either directly by inhibiting the actual process of transamination or indirectly by interfering with the synthesis of pyridoxal phosphate or pyridoxalamine phosphate which are necessary as coenzymes of such reactions. The second possibility seems less likely because of the short time available for the inhibition to appear. Figure 1 depicts some of the suggested sites of azaserine inhibition. Kaplan and Stock⁷ have also concluded that azaserine is an inhibitor of amino acid synthesis on the basis of their observation that inhibition of growth in E. coli by azaserine can be overcome by addition of certain amino acids. Two azaserine-inhibited reactions, which have been recently reported, would also fit into this scheme. It has been shown that azaserine inhibits the conversion of α -Nformyl glycinamide ribotide to α -N-formylglycinamidine ribotide,⁴ and the amination of xanthosine-5'-phosphate to guanosine-5'-phosphate.⁸ L-Glutamine is the donor of amino groups in both these reactions.

An interesting feature is the build-up of glutamine despite the fact that the formation of glutamic acid (its precursor) is partially inhibited by azaserine. It is to be noted, however, that the decrease in glutamic acid is by no means as marked as the decreased formation of aspartic acid in the presence of azaserine. One explanation of this may be that while it is known⁹ that glutamic acid can be synthesized from NH_4^+ and α -ketoglutaric acid, the synthesis of aspartic acid by a similar reaction of NH4+ and oxalacetic acid has not been proved. This alternative pathway of glutamic acid synthesis, not involving transamination, probably operates in Scenedesmus.

- (7) L. Kaplan and C. C. Stock, Federation Proc., 13, 239 (1954).
 (8) M. Bentley and R. Adams, *ibid.*, 15, 218 (1956).
 (9) H. A. Krebs and P. D. Cohen, *Biochem. J.*, 33, 1895 (1939).

Fig. 1.—Possible sites of azaserine inhibition.

Since the formation of serine is blocked partially by azaserine, smaller amounts of ethanolamine and choline (which are derived from it) will be available for incorporation into phospholipids and this may account for the decreased radioactivity found in this region of the chromatograms in the presence of azaserine. The lipid and area X also show decreased activity. This might be accounted for, at least in part, by blockage of a transamination reaction leading to glycine which is necessary for the synthesis of the heterocyclic rings in the porphyrin pigments.¹⁰

Glycolic acid, which generally accumulates⁵ at low CO₂ pressures, was considerably increased at higher levels of azaserine. This could not be caused by a lower rate of CO₂ fixation since this is increased by azaserine during photosynthesis. The increased levels of acids in the Krebs cycle may cause an increased formation of glyoxylic acid,¹¹ which with an inhibited glycine formation would be available for glycolic acid production. The increased rate of CO₂ fixation in the presence of azaserine is probably responsible for the increased level of sucrose drained from the photosynthetic cycle.

Examination of the components of the photosynthetic cycle, by analysis of the materials produced by phosphatase action, revealed the presence of glyceric acid and all the usual sugars. Several additional unidentified components were detected in the phosphatased triose phosphate and glucose cyclic 1,2-phosphate areas eluted from azaserine chromatograms.

(10) R. J. Della Rosa, K. I. Altman and K. Salomon, J. Biol. Chem., 202, 771 (1953).

(11) R. A. Smith, J. R. Stamer and I. C. Gunsalus, Biochem, Biophys. Acta, 19, 567 (1956). The total fixations in the experiments, in which an intense photospot light was substituted for one of the reflector floods for 50 minutes of the one hour steady state period (Table II), indicate that a larger proportion of the algae were killed by the bright light in the presence of azaserine than in its absence. However, control and azaserine chromatograms, each carrying a total activity of 1×10^6 counts/min., showed spots (Table II) with the same order of relative activities as those given in Table I.

An attempt to reverse the effects of azaserine inhibition with glutamine was only partially successful (Table III). Some increase in radioactivity in the lipid, phospholipid, area X and glutamic acid was observed. The apparent continued build-up of glutamine can be explained by suggesting that while the rate of conversion of C¹⁴-labeled precursors to glutamine remains almost the same, the introduction of inactive glutamine causes a dilution of radiocarbon in the glutamine pool with a consequent lowering in the specific activity of the glutamine being converted to further products and hence an increase in the residual C14-glutamine observed. It is interesting to note that the combined effect of azaserine and added inactive glutamine has caused almost a twenty-fold increase of C¹⁴-glutamine.

Although azaserine caused a marked increase in CO_2 fixation by *Chlorella* (Table IV), analysis of aliquots containing equal amounts of radioactivity showed that the radioactivity of most of the metabolites, relative to each other, remained the same.

BERKELEY 4, CALIFORNIA